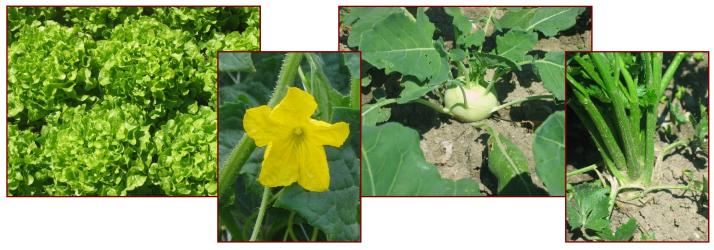
Nitrogen and Crude Proteins in Beetroot under Different Fertilization Treatments

Marko Petek^{1*}, Mirjana Herak Ćustić¹, Nina Toth², Sanja Slunjski¹, Lepomir Čoga¹, Ivan Pavlović¹, Saša Cvetković³

 ¹University of Zagreb, Faculty of Agriculture, Department of Plant Nutrition, Svetošimunska 25, HR-10000 Zagreb, Croatia, mpetek@agr.hr (*corresponding author)
 ²University of Zagreb, Faculty of Agriculture, Department of Vegetable Crops
 ³University of Zagreb, Faculty of Agriculture, student

- vegetable has an important role in human nutrition as a source of:
 - minerals, vitamins
 - amino acids and proteins
- vegetable consumption contribute to human
 - health

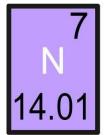


- beetroot as a functional food
 - prevents the emergence and development of cancer
 - anemia, leukemia and malignant tumors

- efficient production of vegetables is based on high investments
 - especially fertilizers
- optimizing crops nutrition
 - achieving satisfactory yields and quality

- all essential nutrients in the soil are necessary to bring to the stage where the plant constantly have sufficient amounts of nutrients accessible
- during all phases of growth and development in all conditions

May 3-5, 2012 :: Cluj-Napoca :: Romania 3rd CASEE conference 'Sustainable Agriculture and Food Production in the Danube Region'


- imbalance in the nutrition
 - decreasing of growth
 - increasing imbalance of nutrients in the soil and plant
 - excess of nitrogen
 - especially imbalance of potassium, magnesium and calcium
 - increase the risk of damage from the environment
 - lodging, disease and intolerance to cold temperatures

- fertilizers use
 - economicaly
 - to raise the amount of accessible nutrients in the soil
 - meeting the needs of plants for normal growth and development
- proper fertilization
 - leads to an increase of nutrients in the soil and plant
 - reflects to the quality of vegetables and its complete nutritional value

- nitrogen is integral part of many organic molecules
 - proteins
 - nucleic acids
 - chlorophyll

 plants incorporate nitrogen in organic matter throughout the whole growing season

- nitrogen
 - the most important macronutrient in the formation of yield and quality of vegetables
- nitrogen fertilization of vegetables
 - increasing protein levels still attracts very little attention
- Lešić et al. (2002)
 - 0.14 to 2.50 % N in dry weight

- crude proteins
 - important in nutrition of humans and livestock
- however, grains, meat, milk and soybean are always cited as sources of crude proteins
- it is worth mentioning that vegetables are not a negligible source of crude proteins
 - the fact that considerable amounts of vegetables should be consumed daily

- Lešić et al. (2002)
 - 11-20 g kg⁻¹ crude proteins in fresh weight
- Wybenga and Lehr (1958)
 131-214 g kg⁻¹ crude proteins in beetroot dry weight

Aim

- to determine
 - the influence of different organic and mineral fertilization treatments
 - post-harvest treatments on the content of nitrogen and crude proteins
 - in the edible part of beetroot (*Beta vulgaris* var. *conditiva*)

- filed fertilizer trial
 years: 2003-2005
- cultivar Bikor

- 2 locations
 - Žumberačko gorje Brašljevica
 - Lika Hrvatsko Polje

- Latin square method
- treatments
 - unfertilized control
 - 50 t stable manure ha⁻¹
 - 500 kg NPK 5-20-30 ha⁻¹
 - 1000 kg NPK 5-20-30 ha⁻¹

trial setting

Marko Petek, mpetek@agr.hr

environment	sowing	harvest	vegetation
Brašljevica, 2003	22.05.	21.08.	90 days
Hrvatsko Polje, 2004	21.05.	24.08.	94 days
Hrvatsko Polje, 2005	29.06.	28.09.	90 days

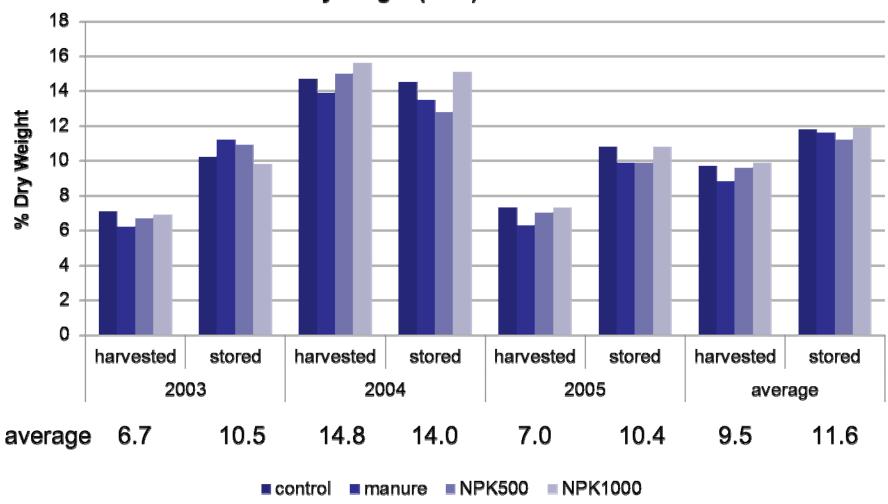
storage: 45 days at 5 °C in a fridge without light

beetroot sowing

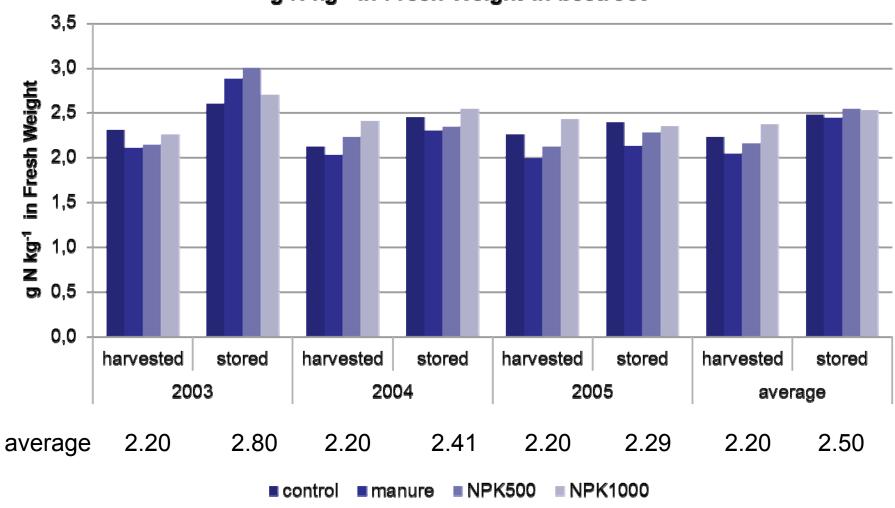
harvested beetroot

May 3-5, 2012 :: Cluj-Napoca :: Romania 3rd CASEE conference 'Sustainable Agriculture and Food Production in the Danube Region'

- taken samples from each plot
 - random: 10-12 beetroots

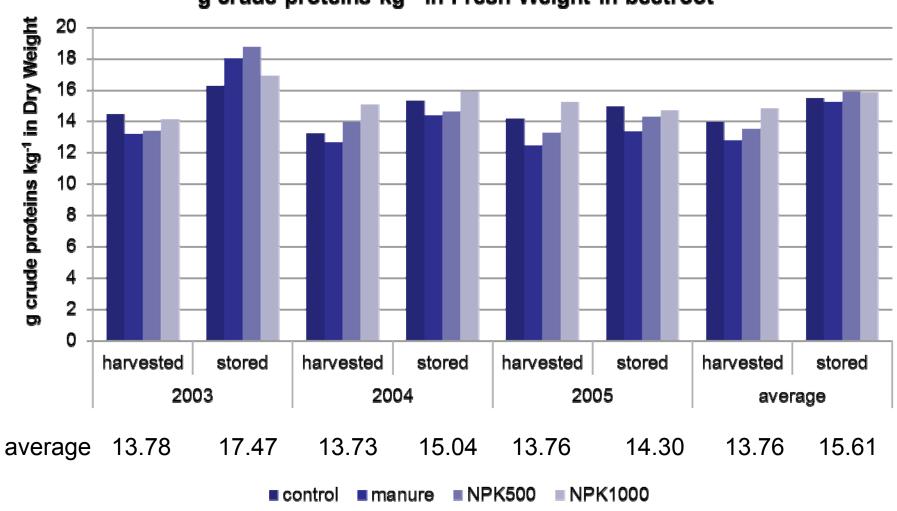

- total nitrogen
 - Kjeldahl method (AOAC, 1995)
- crude proteins
 - -% N_{total} x 6,25 (Vajić, 1964)

- statistical program SAS System for win Ver. 9.1
- Tukey test multiple comparison (Tukey's HSD)



Dry weight (in %) in beetroot

Results



g N kg⁻¹ in Fresh Weight in beetroot

Results

g crude proteins kg⁻¹ in Fresh Weight in beetroot

Conclusions

- the highest content of crude proteins in fresh weight was obtained in 2004 and 2005
 - in fertilization treatment with 1000 kg ha⁻¹ NPK 5-20-30
- the crude protein content was higher in stored beetroot because of its decreasing water content (12 % average loss)
- this one of the factors that can increase the nutritional quality of beetroot as a functional food

Marko Petek, PhD. University of Zagreb Faculty of Agriculture Department of Plant Nutrition Svetošimunska 25, HR-10000 Zagreb, Croatia mpetek@agr.hr

